
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – High-Performance Embedded Programming Fall 2020

 1 Instructor: Daniel Llamocca

Laboratory 6
(Due date: Nov. 9th)

OBJECTIVES
▪ Compile and execute C++ code using the TBB library in Ubuntu 12.04.4 using the Terasic DE2i-150 Development Kit.

▪ Execute applications using TBB: parallel_pipeline

REFERENCE MATERIAL

▪ Refer to the board website or the Tutorial: Embedded Intel for User Manuals and Guides .

▪ Refer to the Tutorial: High-Performance Embedded Programming with the Intel® AtomTM platform → Tutorial 7 for associated

examples.

ACTIVITIES

FIRST ACTIVITY: COMPUTATION ON A STREAM OF INCOMING VECTORS (100/100)
▪ Given a vector 𝑥, we want to transform it into a vector �⃗�, whose elements are specified by:

𝑟(𝑖) =
1

1 + 𝑒−𝑥(𝑖)
, 𝑖 = 0,… , 𝑛 − 1

▪ Then, we want to get the minimum value out of all the elements in vector �⃗�, i.e. 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑚𝑖𝑛 (�⃗�)

▪ This is a relatively s imple vector operation. However, in a real application, we want to process a set of incoming vectors.
This is depicted in Fig. 1. For every incoming vector 𝑥, we compute �⃗�, and then get the minimum value (the results are

stored in an array).

▪ A straightforward sequential implementation can then be quickly implemented. But if we can divide the computations into a

linear sequence of stages (operation on vector 𝑥, and then get the minimum out of vector �⃗�), we might be able to take

advantage of p ipelining. This allows multiple vectors to be in different stages of processing at the same time. This overlapping
of computations might lead to overall execution time improvements when we process a stream of incoming vectors.

INSTRUCTIONS

▪ In this experiment, you are asked to implement a pipeline (via TBB parallel_pipeline) for the application of Fig. 1.

✓ To simplify the problem, we assume that the incoming vectors are extracted from a matrix.

▪ You are asked to implement a serial-parallel-serial pipeline (3 stages) as depicted in Fig. 2.
✓ First Stage: It receives items (vectors) and feeds them into the pipeline.

✓ Second Stage: It generates the vector �⃗�. This is a parallel stage since the computations are relatively complex.
✓ Third Stage: It gets the minimum value of the vector �⃗� and places them in an output array ci.

Figure 1. Description of application: A set (NV) of incoming vectors (each vector represented by �⃗�) is processed by the

software application. Out of each vector, one scalar result is generated. The final result is a vector of NV elements.

Software

Application
...

n

NV

NV

𝑥

Stage 1 Stage 2 Stage 3
*double

..
.

ci

ci+n-1

ci+2

𝑟 =
1

1+𝑒−𝑥()
j=2 min(r)

...

...

...

...

...

..
.

..
.

..
.

..
.

..
.

a[0]

a[i]

𝑚𝑖𝑛(�⃗�)

NV

n

...r

NV

?

Figure 2. Serial-parallel-serial pipeline. Data is read from a 2D array. Stage 1 feeds input data (a n-element vector)

into the pipeline. Parallel Stage 2 performs the element-wise operation. Stage 3 computes the minimum of the

incoming vector and places the result in an output array.

https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=11&No=529
http://www.secs.oakland.edu/~llamocca/emb_intel.html
http://www.secs.oakland.edu/~llamocca/emb_intel.html

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – High-Performance Embedded Programming Fall 2020

 2 Instructor: Daniel Llamocca

▪ Write a .cpp program that reads the parameters n (length of vectors) and NV (number of vectors), and then performs the

specified computations.

✓ Your code should implement the software pipeline in Fig. 2 using TBB parallel_pipeline.

✓ Include a standard sequential implementation in order to compare processing times.
✓ Your code should measure the computation time (only the actual computation portion) in us for both the pipelined and

the sequential implementation.

▪ Verification: Use the following numbers to initialize:

for (i=0; i < NV; i++)

 for (j=0; j < n; j++)

 a[i][j] = i*0.4 - j*0.5;

✓ To verify the correctness of your result, have your program print out the result for n=5, NV=20. The result should match

the following 20-element result vector:
Result vector: [0.119203 0.167982 0.231475 0.310026 0.401312

 0.5 0.598688 0.689974 0.768525 0.832018

 0.880797 0.916827 0.942676 0.960834 0.973403

 0.982014 0.987872 0.991837 0.994514 0.996316]’

▪ Compile the code and execute the application on the DE2i-150 Board. Complete Table I and Table II (use an average of 10

executions in order to get the computation time for each case).
✓ Example: ./pip_lab6 100 300

 It will process 300 100-element vectors and return a 300-element result.

TABLE I. COMPUTATION TIME (US) – SEQUENTIAL IMPLEMENTATION

 NV

n 100 200 500 1,000 5,000 10,000 20,000

20

50

100

500

1,000

TABLE II. COMPUTATION TIME (US) – IMPLEMENTATION WITH TBB PIPELINE

 NV

n 100 200 500 1,000 5,000 10,000 20,000

20

50

100

500

1,000

▪ Comment on your results in Tables I and II. Does increasing NV and/or n result in a consistent processing time improvement?

✓ At what (approximate) point (in terms of NV and n) does time improvement occur?

✓ At what (approximate) point (in terms of NV and n) doe time improvement stop?

▪ Take a screenshot of the software running in the Terminal for n=5, NV=20. It should show the output array and the processing

times for both the pipelined and the sequential implementation.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – High-Performance Embedded Programming Fall 2020

 3 Instructor: Daniel Llamocca

SUBMISSION
▪ Demonstration: In this Lab 6, the requested screenshot of the software routine running in the Terminal suffices.

✓ If you prefer, you can request a virtual session (Webex) with the instructor and demo it (using a camera).

▪ Submit to Moodle (an assignment will be created):
✓ One .zip file:

 1st Activity: The .zip file must contain the source files (.cpp, .h, Makefile) and the requested screenshot.

✓ The lab sheet (a PDF file) with the completed Tables I and II as well as your comments.

TA signature: __________________________________ Date: ______________________________

	Objectives
	Reference Material
	Activities
	First Activity: Computation on a stream of Incoming Vectors (100/100)

	Submission

